13,565 research outputs found

    Interstellar Scintillations of Polarization of Compact Sources

    Get PDF
    We demostrate that the measurement of fluctuations of polarization due to the galactic interstellar scintillations may be used to study the structure of the radiation field at compact radio sources. We develop a mathematical formalism and demonstrate it on a simple analytical model in which the scale of the polarization variation through the source is comparable to the source size. The predicted amplitude of modulation of the polarized radiation flux is ~20% x (pi_s) x (m_sc), where (pi_s) is the characteristic degree of polarization of radiation at the source and (m_sc) is the typical modulation index due to scattering, i.e., (m_sc)~1 for diffractive scintillations and (m_sc)<1 for refractive scintillations.Comment: 5 pages, 2 figures, emilateapj.sty. Submitted to ApJ

    Do Visual-Olfactory Associations Strengthen the Real-Object Preference?

    Get PDF
    Current knowledge of human object perception relies heavily on studies using images as proxies for real objects. However, real objects are fundamentally different from images. For example, real objects have multisensory properties while images do not. Given that research shows that people look longer at real objects than images of objects, known as the real object preference, and that people look longer at objects when they are presented along with an associated smell, the present pilot study aimed to assess whether visual-olfactory associations contribute to the real-object preference. The present study used a within-subjects design including four participants. Participants viewed a real object alongside an identical image of the object while presented with either a congruent odor (e.g., viewed orange and smelled orange), incongruent odor (e.g., viewed orange and smelled coffee), or neutral odor (e.g., viewed orange and smelled odorless air). Participants’ eyes were tracked using an eye tracker as they viewed the objects, and the percent looking time at the real object was analyzed. Preliminary results suggest that participants looked more at the real object than the image in the neutral odor condition, replicating the real-object preference. Further, the results demonstrated a trend in which congruent odors maintained the real-object preference while incongruent odors decreased the real-object preference. Prior to future data collection, researchers should focus on refining the current experimental design

    Experimental assessment of presumed filtered density function models

    Get PDF
    Measured filtered density functions (FDFs) as well as assumed beta distribution model of mixture fraction and “subgrid” scale (SGS) scalar variance, used typically in large eddy simulations, were studied by analysing experimental data, obtained from two-dimensional planar, laser induced fluorescence measurements in isothermal swirling turbulent flows at a constant Reynolds number of 29 000 for different swirl numbers (0.3, 0.58, and 1.07)

    Comparison of imaging with sub-wavelength resolution in the canalization and resonant tunnelling regimes

    Full text link
    We compare the properties of subwavelength imaging in the visible wavelength range for metal-dielectric multilayers operating in the canalization and the resonant tunnelling regimes. The analysis is based on the transfer matrix method and time domain simulations. We show that Point Spread Functions for the first two resonances in the canalization regime are approximately Gaussian in shape. Material losses suppress transmission for higher resonances, regularise the PSF but do not compromise the resolution. In the resonant tunnelling regime, the MTF may dramatically vary in their phase dependence. Resulting PSF may have a sub-wavelength thickness as well as may be broad with multiple maxima and a rapid phase modulation. We show that the width of PSF may be reduced by further propagation in free space, and we provide arguments to explain this surprising observation.Comment: 17 pages,12 figure

    Growth of Perturbation in Gravitational Collapse and Accretion

    Get PDF
    When a self-gravitating spherical gas cloud collapses or accretes onto a central mass, the inner region of the cloud develops a density profile ρr3/2\rho\propto r^{-3/2} and the velocity approaches free-fall. We show that in this region, nonspherical perturbations grow with decreasing radius. In the linear regime, the tangential velocity perturbation increases as r1r^{-1}, while the Lagrangian density perturbation, Δρ/ρ\Delta\rho/\rho, grows as r1/2r^{-1/2}. Faster growth occurs if the central collapsed object maintains a finite multiple moment, in which case Δρ/ρ\Delta\rho/\rho increases as rlr^{-l}, where ll specifies the angular degree of the perturbation. These scaling relations are different from those obtained for the collapse of a homogeneous cloud. Our numerical calculations indicate that nonspherical perturbations are damped in the subsonic region, and that they grow and approach the asymptotic scalings in the supersonic region. The implications of our results to asymmetric supernova collapse and to black hole accretion are briefly discussed.Comment: 23 pages including 6 ps figures; Minor changes and update; To appear in ApJ, 200

    Hysteretic and chaotic dynamics of viscous drops in creeping flows with rotation

    Full text link
    It has been shown in our previous publication (Blawzdziewicz,Cristini,Loewenberg,2003) that high-viscosity drops in two dimensional linear creeping flows with a nonzero vorticity component may have two stable stationary states. One state corresponds to a nearly spherical, compact drop stabilized primarily by rotation, and the other to an elongated drop stabilized primarily by capillary forces. Here we explore consequences of the drop bistability for the dynamics of highly viscous drops. Using both boundary-integral simulations and small-deformation theory we show that a quasi-static change of the flow vorticity gives rise to a hysteretic response of the drop shape, with rapid changes between the compact and elongated solutions at critical values of the vorticity. In flows with sinusoidal temporal variation of the vorticity we find chaotic drop dynamics in response to the periodic forcing. A cascade of period-doubling bifurcations is found to be directly responsible for the transition to chaos. In random flows we obtain a bimodal drop-length distribution. Some analogies with the dynamics of macromolecules and vesicles are pointed out.Comment: 22 pages, 13 figures. submitted to Journal of Fluid Mechanic

    An Extinction Study of the Taurus Dark Cloud Complex

    Get PDF
    We present a study of the detailed distribution of extinction in a region of the Taurus dark cloud complex. Our study uses new BVR images of the region, spectral classification data for 95 stars, and IRAS Sky Survey Atlas (ISSA) 60 and 100 micron images. We study the extinction of the region in four different ways, and we present the first inter-comparison of all these methods, which are: 1) using the color excess of background stars for which spectral types are known; 2) using the ISSA 60 and 100 micron images; 3) using star counts; and 4) using an optical (V and R) version of the average color excess method used by Lada et al. (1994). We find that all four methods give generally similar results, with important exceptions. To study the structure in the dust distribution, we compare the ISSA extinction and the extinction measured for individual stars. From the comparison, we conclude that in the relatively low extinction regions studied, with 0.9 < A_V < 3.0 mag (away from filamentary dark clouds and IRAS cores), there are no fluctuations in the dust column density greater than 45% (at the 99.7% confidence level), on scales smaller than 0.2 pc. We also report the discovery of a previously unknown stellar cluster behind the Taurus dark cloud near R.A 4h19m00s, Dec. 27:30:00 (B1950)Comment: 49 pages (which include 6 pages of tables and 6 pages of figures
    corecore